Actions
Morph-M Python - Neighborhood Operator » History » Revision 2
« Previous |
Revision 2/3
(diff)
| Next »
Serge Koudoro, 10/26/2009 02:45 PM
Morph-M Python - Neighborhood Operator¶
Example 1: Erosion. This generic function, create a list with all neighborhord values. These values are send to its operator and rthe return value will be put on center.
def MyErode(imIn, nl, imOut):
# version lambda:
morphee.ImNeighborhoodUnaryOperation(imIn, nl, lambda l:min(l), imOut)
# version that directly use the python function 'min':
morphee.ImNeighborhoodUnaryOperation(imIn, nl, min, imOut)
if __name__=='__main__':
im8=morphee.fileRead(os.path.join(images_dir_gray,"foreman.png"))
imOut=morphee.getSame(im8)
imOut_2=morphee.getSame(im8)
nl=morphee.NeighborList.neighborsSquare2D
# version Python:
MyErode(im8,nl,imOut)
# version C++:
morphee.ImErode(im8,nl,imOut_2)
# vérification:
morphee.pngFileWrite(imOut,os.path.join(temp_dir,"ero1.png"))
morphee.pngFileWrite(imOut_2,os.path.join(temp_dir,"ero2.png"))
for p1,p2 in zip(imOut.imageData(), imOut_2.imageData()):
assert(p1==p2)
Filtre de rang:
class RankOrder:
def __init__(self, quantile):
# on stocke la valeur du quantile:
self.quantile=quantile
def __call__(self, pyt):
l=list(pyt)
# l est la liste des valeurs des voisins
l.sort()
# conversion quantile/index:
index=int(len(l)*self.quantile)
if index >= len(l):# si on dépasse, on prend le dernier
index=-1# -1 est le dernier élément de la liste
return l[index]
def ImRankOrder(imIn, nl, quantile, imOut):
op=RankOrder(quantile)
morphee.ImNeighborhoodUnaryOperation(imIn,nl,op,imOut)
# min (erosion)
ImRankOrder(im8,nl,0,imOut)
# check results:
morphee.ImErode(im8,nl,imOut_2)
for p1,p2 in zip(imOut.imageData(), imOut_2.imageData()):
assert(p1==p2)
# max (dilatation)
ImRankOrder(im8,nl,1,imOut)
# check results:
morphee.ImDilate(im8,nl,imOut_2)
for p1,p2 in zip(imOut.imageData(), imOut_2.imageData()):
assert(p1==p2)
# quantile à 0.25:
ImRankOrder(im8,nl,0.25,imOut)
# check results:
for pOut,pIn in zip(imOut.imageData(), im8.imageData()):
try:
assert(pOut<=pIn)
except:
pass
#print "Opérateur non anti-extensif: ",pOut, pIn
Filtre de rang, avec [anti]extensivité garantie
class RankOrderWithExtensivity:
def __init__(self, quantile):
self.quantile=quantile
if quantile > 0.5:
self.f=max
elif quantile < 0.5:
self.f=min
else:
self.f=None
def __call__(self, pyt,center):
l=list(pyt)
l.sort()
index=int(len(l)*self.quantile)
if index == len(l):
index=-1
if self.f:
# selon que l'on a choisi un quantile
# dans la moitié supérieure ou inférieure,
# on prend le max (resp. min) avec le centre,
# pour garantir imOut>=imIn (resp <=)
return self.f(center, l[index])
else:
return l[index]
def ImRankOrderWithExtensivity(imIn, nl, quantile, imOut):
op=RankOrderWithExtensivity(quantile)
morphee.ImNeighborhoodUnaryOperationWithCenter(imIn,nl,op,imOut)
# quantile à 0.25 sauf si on est pas en-dessous
ImRankOrderWithExtensivity(im8,nl,0.25,imOut)
# Check results
for pOut,pIn in zip(imOut.imageData(), im8.imageData()):
try:
assert(pOut<=pIn)
except:
print "Opérateur complexe non anti-extensif: ",pOut, pIn
Minkowski Addition (dual dilatation)
def MinkowskiAdditionOperator(pyt,center):
while pyt.isNotFinished():
if pyt.getPixel() < center:
pyt.setPixel(center)
pyt.next()
def MyMinkowskiAddition(imIn, nl, imOut):
morphee.ImUnaryOperationOnNeighborhoodWithCenter(imIn,nl,MinkowskiAdditionOperator,imOut)
# Addition de minkowski (dilatation duale)
# version Python:
MyMinkowskiAddition(im8,nl,imOut)
# version C++:
morphee.ImMinkowskiAddition(im8,nl,imOut_2)
morphee.pngFileWrite(imOut,os.path.join(temp_dir,"dil1.png"))
morphee.pngFileWrite(imOut_2,os.path.join(temp_dir,"dil2.png"))
for p1,p2 in zip(imOut.imageData(), imOut_2.imageData()):
assert(p1==p2)
Updated by Serge Koudoro about 15 years ago · 2 revisions